The Benefits of Probability Proportional to Size Sampling in Cluster-Randomized Experiments

Michael J. Higgins

Princeton University

Aug 29, 2014
Cluster-randomized experiments: Randomization of treatment across clusters of units instead of the units themselves.

Reasons for cluster-level randomization: Logistical, not to improve power.

E.g.: Impractical or infeasible to randomize across units, avoid “interference” or “treatment contamination,” etc.
Examples:

- Assign treatment to villages, interested in effects at individual/household level.

 National Solidarity Programme (Beath, Christia, Enikolopov)
 Clientelism and Vote Buying (Wanchekon)

- Assign treatment to households, interested in individual effects.

 Get out the vote (Gerber, Green, Larimer)

Also common in medical trials and experiments in education.
Problems with estimating treatment effects

- Unbiased and precise estimation of population average treatment effect (PATE) can be problematic.
Problems with estimating treatment effects

- Unbiased and precise estimation of population average treatment effect (PATE) can be problematic.
- With PATE, usually need to sample clusters from population (e.g. sampling a subset of villages in a country).
- Current practice: clusters sampled using SRS
Problems with estimating treatment effects

- Unbiased and precise estimation of population average treatment effect (PATE) can be problematic.
- With PATE, usually need to sample clusters from population (e.g. sampling a subset of villages in a country).
- Current practice: clusters sampled using SRS
- Horvitz-Thompson: unbiased, but not location invariant. Large standard errors that can increase when transforming variables.

Difference-in-means: Location invariant but biased when treatment effects correlated with number of units within cluster (Middleton and Aronow).
Problems with estimating treatment effects

- Unbiased and precise estimation of population average treatment effect (PATE) can be problematic.
- With PATE, usually need to sample clusters from population (e.g. sampling a subset of villages in a country).
- Current practice: clusters sampled using SRS
- Horvitz-Thompson: unbiased, but not location invariant. Large standard errors that can increase when transforming variables.

Difference-in-means: Location invariant but biased when treatment effects correlated with number of units within cluster (Middleton and Aronow).

- **Solution**: Sampling clusters with probability proportional to size—the number of units within each clusters—eliminate these problems with estimation.
The population of units of interest \(y_1, \ldots, y_n \) partitioned into \(\#c \) clusters.

Quantity of interest: population average treatment effect (PATE).

\[
PATE = \frac{1}{n} \sum_{i=1}^{n} y_i(1) - \frac{1}{n} \sum_{i=1}^{n} y_i(0)
\]

\(y_i(1) \) is response of unit \(i \) under treatment, \(y_i(0) \) is response under control.
Draw a sample of clusters from the population of clusters.
1. Draw a sample of s clusters from the population of clusters.

2. Randomize treatment across clusters.
Cluster-Randomized Experiments: Framework

1. Draw a sample of \(#s \) clusters from the population of clusters.
2. Randomize treatment across clusters.
3. Sample \(#s_c \) units within each of the sampled clusters.

Inference on PATE made using purple sampled units.
Current practice: SRS sampling of clusters

- Under Neyman-Rubin potential outcomes model:

\[Y_i = y_i(1)T_i + y_i(0)(1 - T_i) \]

Under SRS of clusters, no current estimator of PATE that is both unbiased and invariant to location shifts of potential outcomes...

- ... without the introduction of additional parameters (Des Raj) (Middleton and Aronow).
Inference on PATE: Horvitz-Thompson

• Horvitz-Thompson estimator of PATE:

\[
\sum_{c \in \#s} w_c \left(\sum_{T_c = 1} \frac{1}{\# T_1} \frac{n_c}{n} \sum_{k \in c} y_{kc}(1) - \sum_{T_c = 0} \frac{1}{\# T_0} \frac{n_c}{n} \sum_{k \in c} y_{kc}(0) \right)
\]

\[
\sum_{k \in c} \frac{y_{kc}(1)}{\# s_c} = \text{Within-cluster sample mean}
\]

\[
\frac{n_c}{n} = \text{Fraction of units contained in cluster } c
\]

\[
\frac{n_c}{\# T_1} = \text{Number of treated clusters}
\]
Inference on PATE: Horvitz-Thompson

- Horvitz-Thompson estimator of PATE:

$$\sum_{c \in \#s} w_c \left(\sum_{T_c=1} \frac{1}{\#T_1} \frac{n_c}{n} \sum_{k \in c} \frac{y_{kc}(1)}{\#s_c} - \sum_{T_c=0} \frac{1}{\#T_0} \frac{n_c}{n} \sum_{k \in c} \frac{y_{kc}(0)}{\#s_c} \right)$$

- Unbiased, but not invariant to location shifts of potential outcomes, which inflates variance:

$$y_{kc}^* = y_{kc} + \alpha.$$

$$\hat{PATE}^* = \hat{PATE} + k\alpha (\#n_1 - \#n_0).$$

- E.g.: Adjustments for inflation or currency for logged responses. Recoding binary variable from 0–1 to 1–0.
Inference on PATE: Difference-in-means

- Difference-in-means estimator of PATE:

\[
\frac{\sum_{T_c=1} \sum_{k \in c} y_{kc}(1)}{\#s_1} - \frac{\sum_{T_c=0} \sum_{k \in c} y_{kc}(0)}{\#s_0}
\]

- Invariant to location shifts, but biased if treatment effects are correlated with cluster sizes.

 E.g. Treatment effect smaller going from small towns to large cities.
Inference on PATE: Difference-in-means

- Difference-in-means estimator of PATE:

\[
\frac{\sum_{T_c=1} \sum_{k \in c} y_{kc}(1)}{\# s_1} - \frac{\sum_{T_c=0} \sum_{k \in c} y_{kc}(0)}{\# s_0}
\]

- Invariant to location shifts, but biased if treatment effects are correlated with cluster sizes.

 E.g. Treatment effect smaller going from small towns to large cities.

- Common to block or stratify on cluster size to reduce bias.
Inference on PATE: Difference-in-means

- Difference-in-means estimator of PATE:

\[
\frac{\sum_{T_c=1} \sum_{k \in c} y_{kc}(1)}{\#s_1} - \frac{\sum_{T_c=0} \sum_{k \in c} y_{kc}(0)}{\#s_0}
\]

- Invariant to location shifts, but biased if treatment effects are correlated with cluster sizes.

 E.g. Treatment effect smaller going from small towns to large cities.

- Common to block or stratify on cluster size to reduce bias.

- Suboptimal if other covariates predict treatment effects better.

- Still some bias in finite experiments.
Solution: Better design

- Solution: Sample clusters proportional to size instead of SRS.
Solution: Better design

- Solution: *Sample clusters proportional to size* instead of SRS.
- Focus attention on sampling without replacement (PPSWOR sampling):
 Fixed number of clusters sampled \implies Easier to design experiment with budget constraint.
PPSWOR Sampling

- PPSWOR: Probability of sampling cluster c in a sample of s clusters is $s n_c / n$.
- Does not uniquely define a sample; joint probabilities $\pi_{cc'}$ need to be specified.
PPSWOR Sampling

- PPSWOR: Probability of sampling cluster \(c \) in a sample of \(s \) clusters is \(s n_c / n \).
- Does not uniquely define a sample; joint probabilities \(\pi_{cc'} \) need to be specified.
- SunterSampling R package; efficiently draw approximate PPSWOR sample with nice properties.
Horvitz-Thompson estimator of PATE:

$$
\sum_{c \in \#s} w_c \left(\sum_{T_c=1} \frac{1}{\#T_1} \sum_{k \in c} \frac{y_{kc}(1)}{\#s_c} - \sum_{T_c=0} \frac{1}{\#T_0} \sum_{k \in c} \frac{y_{kc}(0)}{\#s_c} \right)
$$

Unbiased and invariant to location shifts of potential outcomes.

Freedom to block on covariates other than cluster size.

Variance not dramatically different from SRS methods.

Equivalent to difference-in-means estimator when same within-cluster sample sizes or under matched-pairs blocking.
Inference on PATE: Horvitz-Thompson

- Horvitz-Thompson estimator of PATE:

\[
\sum_{c \in \#s} w_c \left(\sum_{T_c=1} \frac{1}{\#T_1} \sum_{k \in c} \frac{y_{kc}(1)}{\#s_c} - \sum_{T_c=0} \frac{1}{\#T_0} \sum_{k \in c} \frac{y_{kc}(0)}{\#s_c} \right)
\]

- Unbiased and invariant to location shifts of potential outcomes.
- Freedom to block on covariates other than cluster size.
- Variance not dramatically different from SRS methods.
- Equivalent to difference-in-means estimator when same within-cluster sample sizes or under matched-pairs blocking.
Simulation results

Density of estimates

- PPSWOR
- SRS HT; No Shift
- SRS HT; Additive Shift

Estimate

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Density
Simulation results

Density of estimates

- **PPSWOR**
- **SRS Diff; Block Size**
- **SRS Diff; Block All**

Michael J. Higgins (Princeton University) Cluster-Randomized Experiments Aug 29, 2014
Extensions

Results hold when:

- Stratifying clusters before sampling.
 E.g.: Sample large cities and small villages separately.

- Stratifying within-cluster sample.
 E.g.: Gender, race.

- When treatment is randomized across individual units.
 Useful when design has treatments randomized at both cluster and treatment level.
Thank you.